Third Semester M.Sc. in Physics Examination, September 2016 CONDENSED MATTER PHYSICS

Tim	ie:	3 Hours Max. Marks :	80
		Instruction: Answer all questions.	
1.	a)	Write a note on Bravais lattices listing all the types.	10
	b)	Show that lattices cannot have five fold symmetry under translation. OR	5
2.	a)	Discuss elastic scattering of X-rays from a perfect lattice.	5
	b)	Find reciprocal lattice of fcc lattice.	5
	c)	Mention the applications of synchrotron radiations.	5
3.	a)	Explain the principles of electron diffraction technique.	4
	b)	Compare neutron diffraction with X-ray diffraction.	5
	c)	Explain diamagnetism, paramagnetism and ferromagnetism on the basis of magnetic dipoles of the atoms.	6
		물로 하는 사용하다로 하는 이번 수 있는 것이 되었다. 그는 사람들은 그는 사람들은 그는 사람들은 것이 되었다. 그는 사람들은 것이 되었다. 	
4.	a)	What is gyromagnetic ratio? Calculate the g – factor for Cr2+ ion.	5
	b)	Give the Neel theory of antiferromagnetism based on two-sublattice model.	10
5.	a)	What is the difference between type I and type II superconductors?	5
	b)	Derive an expression for the London penetration depth.	10
6.	a)	Discuss the thermodynamics of superconducting transition and derive Rutger's formula.	8
	b)	Explain superconductivity on the basis of BCS theory.	7
7.	a)	Derive an expression for the carrier concentration in an intrinsic semiconductor.	10
	b)	Derive an expression for electrical conductivity of an intrinsic semiconductor and explain how it helps to determine its energy gap.	5

- 8. a) Obtain an expression for impurity concentration for a doped semiconductor. 10
 - b) Derive an expression for the ionization energy of donors in an extrinsic semiconductor.
- 9. Answer any four of the following:

 $(4 \times 5 = 20)$

- a) Obtain Miller indices for (100), (010) and (111) planes.
- b) In a cubic crystal, using X-rays of wavelength 1.6Å, a first order (100) reflection is observed at glancing angle of 18°. Calculate the distance between the (100) planes and (111) planes of the crystal.
- c) A paramagnetic substance has 10^{28} atoms per cubic meter. The magnetic moment of each atom is 1.8×10^{-23} ampere per square meter. Calculate paramagnetic susceptibility at 310 K.
- d) Calculate the change in susceptibility from its maximum value of MnO crystal at 300 K using the following data.

$$T_N = 116 \text{ K}, \ \chi_{T=T_C} = 57.9 \times 10^{-4}, \ \Theta = 610, \ N = 0.57 \times 10^{28} \, \text{m}^{-3}, \ \mu_J = 5.7 \mu_B \ \text{and}$$

$$\mu_B = 9.27 \times 10^{-24} \ \text{JT}^{-1}.$$

- e) Estimate the magnetic field strength necessary to destroy superconductivity in a sample of lead at 4.2 K. Given : $T_c = 7.2$ K and $H_c(0) = 0.080$ T.
- f) On the basis of BCS theory calculate the energy gap in eV of lead at 0 K and at 6.8 K. Given: $T_c = 7.2 \text{K}$ and $k_B = 1.38 \times 10^{-23} \, \text{JK}^{-1}$.
- g) Determine the Fermi level at 310 K for the intrinsic semiconductor materials with

i)
$$\frac{m_p^*}{m_n^*} = 2$$

ii)
$$\frac{m_p^*}{m_n^*} = 1.5$$
. Given: $k_B = 1.38 \times 10^{-23} \text{ JK}^{-1}$.

h) Calculate the ionization energy of a donor atom in a semiconductor with $m_n^\star=0.25m_0$ and $\epsilon=16$. Ionization energy of hydrogen atom is 13.6 eV.