Second Semester M.Sc. Physics Examination, January 2016

Thermal Physics and Statistical Mechanics

Time: 3	Time: 3 Hours Max. Mar.	
Instructions: Answer all questions.		
1. (a) (b)	Deduce Maxwell's relations in thermodynamics. Derive Clausius-Clapeyron equation.	10 5
2. (a) (b)	OR State and explain Onsager reciprocal equation. Show that for an ideal gas, $C_p - C_v = R$.	10 5
3.(a)	State and prove Liouville's theorem.	10
(b)	Write a note on Phase space of a molecule.	5
	OR	
4.(a)	Derive the distribution for a canonical ensemble.	10
(b)	State and explain Gibbs paradox.	5
5. (a)	Derive the expressions for BE and FD distribution functions starting from a grand canonical ensemble.	10
(b)	Obtain the symmetric and anti symmetric wave functions for a system of two independent quantum particles.	5
	OR	
6.(a)	Obtain an expression for the average value of an observable using density matrix formalism.	10
(b)	Derive an expression for rotational partition function at high temperature.	5
7. (a)	Starting from Fermi energy equation derive an expression for zero	
W. c	point pressure of an electron gas in metals.	10
(b)	Write a note on flux quantization.	5

- 8. (a) Using BE statistics derive Planck's law of black body radiation.
 - (b) Define magnetic susceptibility. 5
- 9. Answer **any four** of the following:

4X5 = 20

- (a) State and explain second law of thermodynamics.
- (b) Given that the critical temperature, critical pressure and molar volume for a gas are 33.2K, 1.295 X 10⁶ Pa and 6.5 X 10⁻⁵ m³mol⁻¹. Find the Van der waal's constants.
- (c) Derive an expression for entropy of a system in terms of Partition function.
- (d) Prove that for two systems to be in equilibrium, their chemical potentials must be constant.
- (e) Under what condition does one get the classical limit of quantum statistical system?
- (f) Deduce the vibrational contributions of the molecules of a gas to the specific heat.
- (g) Calculate the Fermi energy in eV for sodium, assuming that it has 1 free electron per atom. Given: density of sodium= 0.97 gcm⁻³, atomic weight of sodium is 23.
- (h) How many photons are there in 1cc of radiation at 727°C temperature?