Second Semester M.Sc. Physics Examination, January 2016 Spectroscopy

Ti

Max. Marks: 80
for the the
10
5
10
or nuclear 5
explain
meter. 10
5
d rotator of
10
5
10
5
he
10
5
ns. 10
aphy. 5
ays. 10
5

4X5=20

- Answer any four of the following.
 - (a) Using the isotopes $_{\parallel}H^{\parallel}$ and $_{\parallel}H^{2}$, estimate the change of wavelength.
 - (b) A sample of a certain element is placed in a magnetic field of flux density 0.3 tesla. How far apart is the Zeeman component of a spectral line of wavelength $4500 \text{ Å? Given: e/m} = 1.76 \times 10^{11} \text{ C/kg, c} = 3 \times 10^8 \text{ m/s.}$
 - (c) For a given organic compound two kinds of protons exhibit signals at 50 and 200 Hz using a 60 MHz p.m.r spectrometer. What will be their relative position using 90 MHz spectrometer? And convert the position of signal at 50 Hz into δ and τ units.
 - (d) The rotational spectrum of HCl shows a series of lines separated by 20.6/cm. Find the moment of inertia and inter-nuclear distance.
 - (e) Using wavelength of 4000 Å, the first Stokes' line appears at a spacing of 350/cm from the Rayleigh line. Calculate the frequency of the first anti-Stokes line in wave number.
 - (f) The fundamental frequency of a molecule is 8.67 X 10¹³/s. calculate the corresponding Raman lines of the molecule when irradiated with 435.8 nm wavelength.
 - (g) Calculate the energy in joules per quantum calories per mole and electron volts of photons of wavelength 3000 Å.
 - (h) Write a note on cosmic ray spectrum.