

I Semester M.Sc. Degree Examination, May 2014 (Semester Scheme) CHEMISTRY Inorganic Chemistry – I

Time: 3 Hours

Max. Marks: 80

Instruction: Answer any eight sub-questions from question No. 1 and any four of the remaining.

1. Answer any eight of the following:

 $(8 \times 2 = 16)$

- a) How are σ -, π and δ molecular orbitals formed ?
- b) Draw the topological structure of pentaborane-9 and find its B-B, B-H, B-H-B and B-B-B bonds.
- c) The radii of Mg²⁺ and S²⁻ are 0.66 and 1.84 $\rm \mathring{A}$, respectively. Predict the most probable crystal structure for MgS.
- d) Give the expression for Kapustinskii's equation and indicate the terms involved.
- e) NaCl do not favour Frenkel defect, while AgCl does it. Why?
- f) Distinguish 'n' and 'p' type semiconductors.
- g) State Lux-Flood concept of acids and bases. Give an example for each.
- h) What are leveling and differentiating solvents?
- i) Strong oxidizing agents apparently do not exist in liquid ammonia. Why?
- j) Urea is an acid in liquid ammonia but a base in glacial acetic acid. Account for this.
- 2. a) How does the property that Pauling defines as electronegativity vary within the periodic table ?
 - b) Write briefly on the concept of resonance by taking carbonate and thiocyanate as examples.
 - c) What are the postulates of VSEPR model? Based on it, explain the shapes of CIF₃, SF₄ and PF₅. (4+6+6=16)

P.T.O.

MCHT 1.1

- 3. a) Outline the preparation of diborane and explain its structure and bonding.
 - b) Set up MO energy level diagrams for oxygen and nitrogen molecules. Rationalize why the N-N bond distance in N_2^+ is longer than in N_2 .
 - c) State radius ratio rule. Deduce limiting ratio for octahedral and tetrahedral coordination. (4+6+6=16)
- 4. a) Explain the criteria for the formation of stable ionic compounds.
 - b) Discuss Fajan's rules for understanding the existence of covalent character in ionic compounds.
 - c) Derive Born-Lande equation and show how the lattice energy of NaCl crystal is determined. (4+6+6=16)
- 5. a) Write briefly on the non-stoichiometric defects in solids.
 - b) Discuss various types of supramolecular interactions with an example for each type.
 - c) Based on band theory, explain how solids can be classified as conductors, semiconductors and insulators. (4+6+6=16)
- 6. a) Give the Usanovich concept of acids and bases and outline its salient features.
 - b) What is hydrogen bonding? Explain the effects of hydrogen bonding. How IR spectroscopic technique is useful in detecting hydrogen bonding?
 - c) How does N₂O₄ auto-ionize? Describe its role in preparing anhydrous metal nitrates. (4+6+6=16)
- 7. a) What is the relation between the diploe moment of a liquid and its solvating power?
 - b) Write physical properties of liquid sulfur dioxide and discuss different types of chemical reactions involved in it.
 - c) Discuss briefly on the Pearson's concept of hard and soft acids and bases. Based on it, Will Cu²⁺ react more strongly with HO⁻ or NH $_3$? With O²⁻ or S²⁻? (4+6+6=16)

April Same

http://www.ksoumysuru.com