Second Semester M.Sc. Physics Examination, January 2016

Classical Electrodynamics and Optics

Time: 3 Hours Max. Marks: 8		
Instru	actions: Answer all questions.	
1. (a)	Arrive at the multipole expansion of the electrostatic potential due to an arbitrary	
	charge distribution.	(10)
(b)	Setup an expression for electric quadrupole moment.	(5)
	OR	
2. (a)	Setup an expression for Lienard-Wiechert potentials of a moving point charge.	(10)
(b)	Show that charges travelling with uniform speed cannot radiate electromagnetic	
	energy.	(5)
3 .(a)	Deduce the Abraham-Lorentz formula for radiation reaction. Explain its	
	significance.	(10)
(b)	Show that acceleration assumes enormous proportion almost instantaneously, in	
	terms of Abraham-Lorentz formula.	(5)
	OR	
4 .(a)	Discuss the behaviour of plasma in a magnetic field in detail.	(10)
(b)	Obtain an expression for Alfven velocity of a plasma wave.	(5)
5. (a)	Discuss the propagation of electromagnetic waves through a conducting medium.	(10)
(b)	Obtain an expression for plasma frequency of an ionized gas.	(5)
	OR	
6 .(a)	Derive Clausius- Mossotti equation for electric fields in solids.	(10)
(b)	Write a note on crystal polarizers.	(5)
7. (a)	Obtain an equation for the intensity distribution due to superposition of light waves	
	from two coherent sources.	(10)
(b)	Note down the conditions for sustainable interference.	(5)
	OR	
8. (a)	Give a detailed description of diffraction at a circular aperture.	(10)
(b)	Discuss briefly the Huygens' theory of light and Fresnel's correction to it.	(5)

9. Answer **any four** of the following:

(4X5=20)

- (a) Obtain an expression for electric dipole moment.
- (b) Show that when the velocity is zero, the Lienard-Wiechert potentials generate electrostatic potential.
- (c) Obtain an expression for power radiated by an accelerated charge when its acceleration is collinear to its velocity (bremsstrahlung).
- (d) Show that ρ and ϕ are the fourth components of \vec{J} and \vec{A} respectively.
- (e) Write a note on Pinch effect.
- (f) Starting from Fresnel's equations, obtain Brewster's law.
- (g) Discuss about resolving power of Fabry-Perot etalon.
- (h) Write a short note on temporal coherence.