MP-1.4

0033 Total No. of Pages: 2

I Semester M.Sc. Degree Examination, July/August - 2019 (SLM Scheme)

Sl. No.:

PHYSICS (Course - IV)

Solid State Physics and Electronic Devices

Max. Marks: 80 Time: 3 Hours Answer all questions. Instruction: Define reciprocal lattice. Obtain the expressions for reciprocal lattice vectors. 1. a) [10] Deduce the expression for Bloch function. [5] b) Using the tight binding approximation, show the formation of energy bands in a) 2. a simple cubic crystal. Also show that for small values of k, electron will [10] behave like a free particle. For the Kronig-Penny potential with P<<1, prove that the energy of the lowest energy band at k = 0 is $E = \frac{h^2 P}{4\pi^2 m a^2}$. [5] [5] Write a note on Boltzmann transport equations. 3. a) Describe Umklapp scattering with a neat diagram. b) A photon undergoes Compton scattering by an electron at rest. If the energies c) of incident and scattered photons are 0.46 MeV and 280 keV respectively, [5] find the angle between them. OR [10]Explain briefly about 4. a) Anomalous Skin Effect i) Schottky effect ii) Calculate the plasma frequency and dielectric constant of copper for wavelength b) of 640 nm. Given: free electron density = $2.66 \times 10^{28} \text{m}^{-3}$. What is meant by radiationless transition? Arrive at the expression for intensity 5. a) in case of both temperature dependent and temperature independent [10] luminescence. Discuss Franck-Condon Principle with a neat diagram. [5] b) OR P.T.O. -1-0 - 329

- 6. a) Obtain an expression for electrical conductivity of an intrinsic semiconductor and comment on the variation of electrical conductivity with temperature. [10]
 - b) The resistivity of pure silicon is 2350 Ωm and the mobility of electrons and holes in it are 0.135 m²V⁻¹s⁻¹ and 0.048 M² V⁻¹ S⁻¹ respectively. Find the electron and hole concentrations of a specimen of silicon doped with 10¹⁹ atoms of phosphorus per m³. [5]
- 7. a) Derive an expression for contact electric field at the junction of a p-n junction diode. [8]
 - b) Obtain an expression for transition capacitance (C_T) associated with the p-n junction. [7]

OR

- 8. a) With suitable diagrams, explain the construction and working of a silicon controlled rectifier. [10]
 - b) Distinguish between BJT and JFET.

[5]

9. Answer any four of the following:

 $[4 \times 5 = 20]$

- a) Discuss the band structure of an electron in a 2-d lattice and show that the Fermi surface lies inside the first Brillouin zone.
- b) Show that the reciprocal lattice of a fcc is bcc.
- c) Calculate the electrical conductivity of copper if the Fermi energy and electron concentration of copper are 7.04 eV and 2.66×10^{28} m⁻³ respectively.
- d) Write a note on mean free path and its importance.
- e) Calculate the carrier concentration at 300 K for an intrinsic semiconductor with a band gap of 1 eV.
- f) Write a note on Gudden-Pohl effect.
- g) Find the value of applied voltage at 300 K for a p-n junction diode. Given: The saturation current $I_o = 32 \mu A / cm^2$ and net current due to diffusion of charge carriers $I_F = 2.5 A / cm^2$.
- h) With a neat diagram explain the working of a relaxation oscillator.

