

I Semester M.Sc. Examination, May 2014 CHEMISTRY Physical Chemistry – I

Time: 3 Hours Max. Marks: 80

Instructions: Question No. 1 and any four full questions from the remaining.

1. Answer any eight questions:

 $(8 \times 2 = 16)$

- a) State Wien's blackbody ration law.
- b) Define linear operator with one example.
- c) In the following reaction scheme, what is the total order the reaction, $A + B^{-\frac{1}{2}} \rightarrow \text{product}.$
- d) Write integrated expression for the 1st and 2nd order rate constant.
- e) Define entropy; mention any two physical significance of entropy.
- f) Gibb's free energy decreases for all spontaneous process at constant temperature and volume. Give reasons.
- g) State:
 - i) Lambert's law
 - ii) Grothux-Draper law
- h) Molecularity of a reaction cannot be greater than 3. Give reasons.
- i) What is photosensitization? In Photosynthesis process which material act as photosensitizer.
- j) Distinguish between Laser and Maser?
- 2. a) Give brief account on particle duality of material.
 - b) Write a note on Eigen values and Eigen functions with suitable examples.
 - c) Show that f(x) = Sinx is commutative if $\alpha = \frac{d}{dx}$ and $\beta = \frac{d^2}{d^2x}$ where α and β are commutative operator. (6+4+6=16)

MCHT 1.3

- 3. a) Explain collision theory of reaction rate.
 - b) For a first order reaction, if the initial concentration of the reactant is 0.005M and the rate constant is 4 X 10⁻⁴ sec⁻¹ calculate the concentration at 4000 sec.
 - c) How do you determine experimentally total order of a reaction? Explain with suitable example. (6+4+6=16)
- 4. a) Show that Cp = R + Cv.
 - b) Derive an equation for variation of free energy with temperature and pressure.
 - c) How do you determine partial molar volume by apparent molar volume method (slope method)? (6+4+6=16)
- 5. a) Distinguish between Fluorescence and phosphorescence.
 - b) i) Write a note on Uranyloxalate chemical actinometer.
 - ii) In the photochemical reaction B \rightarrow C, 1.0 \times 10⁻⁵ moles of C is formed as a result of the absorption of 6.0 \times 10⁷ ergs at 3600 Å . Calculate the quantum yield.
 - c) Show that $A = \log \frac{I_0}{I_t}$ and explain the quantitative application of Beer's law.

(4+6+6=16)

- 6. a) Write a note on effect of dielectric constant on the rate of a reaction.
 - b) Mention any four postulates of quantum mechanics.
 - c) Explain the effect of pressure change on the rate of reaction. (6+4+6=16)
- 7. a) Write any two limitations of Vant Hoff's equation and define chemical potential.
 - b) Explain kinetics of decomposition of HI.
 - c) Write a note on **any one** of the followings:
 - i) Principles of Laser and its application in chemistry.
 - ii) Determination of rate law for consecutive reaction. (4+6+6=16)